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THE PROPOSITION OF A NEW DAMPING FUNCTION
FOR OUTLIERS IN THE ADJUSTMENT PROCESS

Tadeusz Gargula

Summary

This study proposes of new damping function in the robust estimation process. The formulae for
a behaviour of the damping function were provided and a diagram of adjustment process was
presented. The numerical examples are given in order to assess the efficiency of the proposed
computational algorithm in accomplishing a typical geodetic task with outliers or gross errors.
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1. Introduction

The adjustment of geodetic surveys is usually made by the standard least-square adjust-
ment method (LSQ). It belongs to the wide range of the so-called M-estimation meth-
ods [Wisniewski 2005]. LSQ is called a neutral method of surveying adjustment, in
which random errors (including gross errors) are dispersed in a surveying system on
condition that the residual sum of squares is minimal. Thanks to it the results without
a gross error can be contaminated and that will have negative influence on determined
parameters (e.g. coordinates). Among M-estimation methods a group of robust estima-
tions can be singled out [Kadaj 1980, 1988, Kaminski and Wisniewski 1992, Wisniewski
2008, Xu 2005], aimed at detection and elimination of outliers.

One of the ways of carrying out a robust estimation consists in modification of
weight function as a goal function in the LSQ method, that is in introduction of the
so-called damping function in the adjustment process [Wisniewski 2005]. Among the
most popular damping functions are that of Hampel's [1971], Huber’s [1964], Danish
[Prészynski and Kwasniak 2002], and the functions proposed by the author of this
paper: the QDF [Gargula 2007] and EDF methods [Gargula and Krupinski 2007,
Gargula 2010]. Two examples of these functions are shown in Figure 1.

Modification of the LSQ method consists in multiplying the initial weights p,, or
diagonal elements of weight matrix P, by adequate damping indices (,):
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P =diag{p; i=1 2, .., n (1)

Isi:pi .f(vi) 2)
where:
n - number of observations,
p, — modified weights.
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Fig. 1. Examples of damping functions: the Hampel’s function [1971], the ‘elliptic’ function
(EDF) [Gargula and Krupinski 2007] (LSQ - least-square adjustment method,
v - standardized residual, f(v) — damping function, k, k, - control parameters of damping
functions)

The damping indices f(V) are calculated for the determined standardized residual
values 7,. Standardisation involve the initial residual v, that is the residual obtained by
the LSQ method (first step of robust estimation):

_ 2
v, = —= 3
T (3)

The indices Q, are diagonal elements of variance-covariance matrix of residual
vector V:

Q =P -AAPA) A" (4)

where: A - matrix of indices of residual equation system

After calculating new weights (2) another stage (iteration) of robust estimation
follows, that is residual estimation by the LSQ method with using modified weight
matrix.

The proposition of a new damping function will consist in introducing some
changes in the behaviour of the EDF function (Figure 1b) with the aim of ‘smoothing’
the passage from the range of damping the observations <-k, k> to the range of elimi-
nation (rejecting) of observations [v,| > k.
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2. The proposed damping function

The general equation of conic curve (ellipse) of semi-axis length a, b can be written in
the coordinate system as presented in Figure 1b [Bronsztejn and Siemiendiajew 1990]:

—2 —\2
LA S 5)
a b
On the assumption that a = k and b = I, the equation of damping function EDF
(Figure 1b) can be written as follows [Gargula and Krupinski 2007]:

1 for v.=0
f=1f@)=\1="5 for ¥ e (ki) (6)
0 for [v|>k

The damping function proposed in this study is a spline, consisting of a fragment
of conic curve and two tangents at points k, and —k,. In Figure 2 two examples of func-
tions f, and f, are shown, differing by tangents points (k) k,,,) of an ellipse and a line
segment. For the purposes of this study the working notation: ELDF (elliptical and
linear damping function) has been suggested. The efficiency of appropriate dampening
influence on the outliers will depend on the behaviour of the proposed function.
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Fig. 2. The proposed damping functions (k, k,, k,, — control parameters of damping function)

The initial equation of a tangent line to an ellipse at a point k, can be expressed as
below [Bronsztejn and Siemiendiajew 1990]:

fO—f=k)=f=k) (V-k) (7)
sek)= 1k
f(v_ka)_ 1 kz (8)
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, k
' =k0)=——°kz (9)
Wl—ﬁ

where:
f(v =k,) - value of EDF function (6) at a point k ;
f'(v =k,) - aderivative of this function for y = k..

Therefore the ultimate form of the tangent equation will be as follows:

2 2
f)=- k, — 7+ ut 2-+1—£% (10)
W¢—@ F¢—%
k k

In order to determine the intersection point k, of a tangent to horizontal axis (Figu-
re 2), that is the point of rejection of outliers from the adjustment process, the equation
(10) would be transformed for a value of a function f (v = k,) = 0. The result would be:

k =— (11)

2 2
f)= k, — 7+ k°2+1—% (12)
Hﬁ—g W$—ﬁ

At the end of this derivation a full notation of the proposed damping function
(ELDF) can be compiled as follows:

1 for v, =0
—2
fE)=\1-5 for 7, (~k,k,)
fe ‘ ) - . (13)
f@)=- 0 - v+ 0 = + l—k—‘; for |v|e (k, ;k,)
0 for [l >k,

From the damping function equation (13) it directly results the following notation
of weight function:
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p; for v, =0

1-——p, for v, e(—k ;k,)

p(v)=fp= K (14)
_ ,’1—— -p, for |v|e(k, ;k,)
0

AT

Later in this study the derived equations (13), (14) will be tested on practical exam-
ples.

for [7,1>k,

3. Numerical examples — calculation plan

Calculation examples would refer to two forms of the proposed damping functions
(Figure 2):

« the function f, for k;,,= 0.5k (the method would be described as ELDF1),

« the function f, for k,,,= 0.7k (ELDF2).

The equation of the proposed damping function, expressed in a general form (10)
for a definite value of the parameter k takes the following form:

_ 05  _ 1
L) = "ok s (1)
05 _ 1

(16)

L) = Dok s

The value of the boundary parameter k, denoting rejection of observations (see
Figure 2), would be adequately:

o = 2 (17)
kr(l) =—k
7 (18)

To check the suggested damping functions the example of adjustment of simple
levelling net (junction point in levelling net) was used, as presented in Figure 3. Initial
data are included in Table 1.
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Source: author’s study
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Fig. 3. Test levelling net (R, - benchmarks, P - calculated point, h, - measured height differences)

Table 1. Initial data for numerical example

Nr | Benchmark height Height differences e Apprommfnte height
() R [m] h, [m] errors of point P
i i m; [m] (H’;=R;+ h;) [m]
1 214.000 0.991 0.004 214991
2 216.000 -1.002 0.004 214.998
3 217.000 -1.994 0.004 215.006
4 219.000 -3.947 0.004 215.053
Approximate value of unknown H, = 214.991

To compare the results the computations (the adjustment of observations and
height calculation) will be done in a few variants:

o variant 1: the standard method of least squares (LSQ),

o variant 2: the EDF method (Figure 1b, equation 6),
o variant 3: the ELDF1 method (Figure 2, function f,, equations 15, 17)
o variant 4: the ELDF2 method (Figure 2, function f,, equations 16, 18)

o variant 5: the least-square method used with rejection of outliers (LSQ¥*).

4. Adjustment by EDF1 method

The detailed algorithm of the procedure will be shown on the example of the chosen
method ELDF1, and then the results of all the methods would be compared. The models
used in the least-square adjustment method are available in handbooks on adjustment

computations [Wisniewski 2005, Ghilani 2005].

Observation equations (standard and matrix notations)

h,+v, = H, + 6H — R,

where: H, - approximate height of the determined point

V=AX-L

(19)

(20)
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v, 1 0
v, 1
v, 1 15
v, 1 .
Weights and weight matrix ]
P

P = diag{0.625; 0.625; 0.625; 0.625}
Finding the unknown and residual vector (by LSQ method)
X =(A"PA)'-ATPL =8H =21 mm
V=[21 14 6 -41]"
Standardization of residuals (3), (4)

diag{Q.} = {12; 12; 12; 12}

V=[v};i=1 ..,4] =[606 4.04 173 —11.84]"

27

1)

It is assumed that the boundary criterion of damping function is k = 6 [Wisniewski
2005, Gargula and Krupinski 2007]. Auxiliary parameters, according to (11) and (15)
would have the value k, = 3 and k, = 12. Following (13), these parameters of a damping
function would be checked with regard to what ranges belong the specific standardized
residuals; on this basis a damping index f (v,) would be determined. The calculations
are made as an iteration process. The initial iteration (j = 0) includes results obtained

by the standard LSQ method.

Iterationj =0
VO =V, PV =p; 70 =7

Damping indices f (v,) and damping function F (\_7(0) )

7€ (k) > () =~ T+ o= = 057

R e (k) > () =~ + o = 077
72

W (ki) F(7) = 1= 75 =096

v,” € (=k,;—k & 5+ =00

D2 f) = :
T = 1o % " Tos
F(V) = diag{0.57 0.77 0.96 0.02}
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One can see that the observation h, (distinctly differing from the others) obtained very
low damping index f(v,) = 0.02, which would mean practically zero weight in the
next stage of adjustment.

Iterationj =1
PV =F(V”) PV = diag{0.036 0.048 0.060 0.0012}
X” = (A"PYA) - ATPUL = 8H” = 9.06
VY = AX"” —L =[9.06 2.06 —594 —52.94]"
diag{QY'} = diag{(P") "~ A(A"PVA) AT} ={28.07 2078 1667 800}

\7“)=[{V}“};i=1,...,4]T=[1.97 0.55 —-1.90 —1.88]"

All standardised residuals " obtained at this stage belong to the range (—k; k,), and
so the damping indices (diagonal elements of damping function) will be determined
according to the function described by the equation (6):

F(V") = diag{0.94 1.00 0.95 0.95}

Because the values of the matrix damping function are close to unity, subsequent
iteration (j = 2) will introduce only insignificant changes in the results of the damping
(at the level below 0.1 mm). Therefore the results obtained in this iteration (j = 1) will
be used in the final adjustment of observations and of unknown (the height of a point).

5. The analysis of the results

According to the procedure outlined in the above section, the calculations were made
with EDF function (6) and ELDF2 function (16). The final results are presented in
Table 2.

Table 2. The results of the adjustment — comparison

The stage of adjustment | No. LSQ EDF ELDF1 ELDF2 LSQ*
1 2 3 4 5 6 7
1 0.991 0.991 0.991 0.991 0.991
Initial observations 2 -1.002 -1.002 -1.002 -1.002 -1.002
h; [m] 3 -1.994 -1.994 -1.994 -1.994 -1.994
4 -3.947 -3.947 -3.947 -3.947 -
1 - 6.06 6.06 6.06 -
Standardized residuals 2 _ 4.04 4.04 4.04 _
K 3 - 1.73 1.73 1.73 -
4 - -11.84 -11.84 -11.84 -
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Control parameters of k=6 k=6
the damping function h h K=6 ]f ":132 ]]z" - gé h
1 0.0625 0.000 0.036 0.026 0.0625
Final weights 2 | 00625 0.046 0.048 0.046 0.0625
p;m~] 3 0.0625 0.060 0.060 0.060 0.0625
4 0.0625 0.000 0.001 0.000 -
Unknown §H [mm)] - 21.0 11.5 9.1 9.3 7.3
1 21.0 11.5 9.1 9.3 7.3
Final residuals 2 14.0 45 2.1 23 03
v, [mm] 3 6.0 -35 -5.9 -5.7 -7.7
4 -41.0 -50.5 -52.9 -52.7 -
I‘fl‘jj[“;t]ed unknown - | 2150120 | 2150025 | 2150001 | 2150003 | 214.9983
1 1.0120 1.0025 1.0001 1.0003 0.9983
Adjusted observations | 2 | 09880 | -0.9975 | -0.9999 | -09997 | -1.0017
(h;+v;) [m] 3 | -1.9880 | -1.9975 | -1.9999 | -1.9997 | -2.0017
4 -3.9880 -3.9975 -3.9999 -3.9997 -
LSQ - standard least-square method
EDF - adjustment method based on damping function proposed in [Gargula and Kru-

pinski 2007, Gargula 2010]
ELDFI1, ELDF2 - adjustment method based on damping function proposed in this study
LSQ* - standard least-square method after rejection of outlier h,

The comparison of results allow to make a numerical analysis aimed at formulating
the final conclusions as to the proposed damping function. The sample of observational
data are chosen in such a way that one of the observation (h,) is distinctly different
than others in the context of the obtained adjustment results (the height of the junction
point H, - Figure 3).

The adjustment of observations according to the standard LSQ method (Table 2,
column 3), as it can be easily seen, causes the dispersion of a gross error and weighs
down on the final results (Hp = 215.0120). However, the analysis of final residual values
opens up a possibility of identifying the suspected observation (v, = -41.0 mm), but the
studied example applies to homogenous observations. In case of adjusting the observa-
tion systems of various types (angle, linear, elevation), identifying the outlier at this
stage would be difficult.

Using the EDF function to adjustment of observation (column 4) leads to indica-
tion of standardized residuals values, which contain more precise information about
the occurrence of gross error (v, = -11.84). As a result, the observation is practically
eliminated and obtains zero weight (numerically we ascribe to it the weight close to
zero, e.g. 0.00001, because a diagonal element of a weight function cannot equal zero).
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However the standard parameter value k = 6 adopted here [Gargula and Krupinski
2007] eliminates the observation h,, because v, = 6.06 (outside the accepted range). So
the final result of the equation (H, = 215.0025; almost 10 mm difference in comparison
to LSQ) is probably closer to the real value, but its reliability is low — only 1 outlier.

The ELDF1 damping function (for an adopted criterion k, = 0.5k, column 5) does
not exclude any observation, but observation h, obtains very low weight (0.001) due
to close proximity of its standardized residual (= -11.84) of a boundary value k, = 12.
However one intuitively expects that the outlier should be excluded from the adjust-
ment process, so (for comparison purposes) the higher value of the control parameter
was assumed: k, = 0.7k (ELDF2 function, column 6). This adjustment enhances the
damping impact (in comparison with ELDF1) on potential observations on standard-
ized residuals within the range (Figure 2, equation 14). In this case the observation
h, has been eliminated (the weight equals 0.000), but it did not have significant influ-
ence on the final result (H, = 215.0003) in comparison with the ELDF1 method (H, =
215.0001). It is related to the fact that already in the adjustment with the ELDF1 this
observation obtained the weight close to zero (0.001).

The adjustment by the LSQ* method (after rejecting h,) leads to a result (H, =
214.9983) that differs by 2 mm from the result obtained by ELDF2 method. It should
be remembered however that the ELDF2 function (like other damping functions: EDE,
ELDF1) shows a different behavior than the function resulting from the standard LSQ
method (see Figures 1a and 2).

6. Recapitulation and conclusions

This study proposed a way of using a new damping function in the algorithm of
robust estimation. In the behavior of the damping function (ELDF) one can single out
a fragment of conic curve (ellipse) and two tangents at points defined by the control
parameter k, and -k,. The necessary mathematical equations have been introduced and
a diagram of adjustment process of geodesic observations have been presented. The
studied damping function was tested on two practical examples. To compare the effects
of damping the outliers, an adjustment was done with the use of the author’s damping
function (EDF) and the standard least-square method.
The general conclusions are as follows:

o the ELDF method is effective in finding gross errors,

o the use of the ELDF function in robust estimation leads to elimination or reduction
(damping) of gross error impact,

o in comparison with other functions (EDE, Hampel’s etc.) the new function can
gradually pass from the damping of outliers to their elimination from the adjust-
ment process,

o apart from the standard parameter for standardized residuals (usually k = 6), the

ELDF function has also the possibility of controlling (damping force) the additional
parameter k, in the suggested range |k,| € (0.5k; k),
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o the control (steering) parameters k, k,can be adopted according to values proposed
in this study or (with greater experience) their optimal values can be determined
empirically.
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