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The proposition of a  new damping function  
for outliers in the adjustment process 

Tadeusz Gargula 

Summary

This study proposes of new damping function in the robust estimation process. The formulae for 
a behaviour of the damping function were provided and a diagram of adjustment process was 
presented. The numerical examples are given in order to assess the efficiency of the proposed 
computational algorithm in accomplishing a typical geodetic task with outliers or gross errors. 
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1.	I ntroduction 

The adjustment of geodetic surveys is usually made by the standard least-square adjust-
ment method (LSQ). It belongs to the wide range of the so-called M-estimation meth-
ods [Wiśniewski 2005]. LSQ is called a neutral method of surveying adjustment, in 
which random errors (including gross errors) are dispersed in a surveying system on 
condition that the residual sum of squares is minimal. Thanks to it the results without 
a gross error can be contaminated and that will have negative influence on determined 
parameters (e.g. coordinates). Among M-estimation methods a group of robust estima-
tions can be singled out [Kadaj 1980, 1988, Kamiński and Wiśniewski 1992, Wiśniewski 
2008, Xu 2005], aimed at detection and elimination of outliers. 

One of the ways of carrying out a  robust estimation consists in modification of 
weight function as a goal function in the LSQ method, that is in introduction of the 
so-called damping function in the adjustment process [Wiśniewski 2005]. Among the 
most popular damping functions are that of Hampel’s [1971], Huber’s [1964], Danish 
[Prószyński and Kwaśniak 2002], and the functions proposed by the author of this 
paper: the QDF [Gargula 2007] and EDF methods [Gargula and Krupiński 2007, 
Gargula 2010]. Two examples of these functions are shown in Figure 1. 

Modification of the LSQ method consists in multiplying the initial weights pi, or 
diagonal elements of weight matrix P, by adequate damping indices (v– i ): 
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	 P = =diag{ ;      }p i ni 1 2, , ..., 	 (1)

	  =p pi i if v–· ( )	 (2)

where: 
n	 –	number of observations, 
pi

	–	modified weights.

Source: author’s study

Fig. 1.	 Examples of damping functions: the Hampel’s function [1971], the ‘elliptic’ function 
(EDF) [Gargula and Krupiński 2007] (LSQ – least-square adjustment method,  
v–  – standardized residual, f(v– )  – damping function, k, ko – control parameters of damping 
functions)
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The damping indices  f(v– )  are calculated for the determined standardized residual 
values v– i . Standardisation involve the initial residual vi, that is the residual obtained by 
the LSQ method (first step of robust estimation): 

	 v v
Qi
i

ii

= 	 (3)

The indices Qii are diagonal elements of variance-covariance matrix of residual 
vector V: 

	 Q P A A PA Av 
T T= ( )− −−1 1 	 (4) 

where: A – matrix of indices of residual equation system

After calculating new weights (2) another stage (iteration) of robust estimation 
follows, that is residual estimation by the LSQ method with using modified weight 
matrix. 

The proposition of a  new damping function will consist in introducing some 
changes in the behaviour of the EDF function (Figure 1b) with the aim of ‘smoothing’ 
the passage from the range of damping the observations <–k, k> to the range of elimi-
nation (rejecting) of observations v ki > .
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2.	 The proposed damping function 

The general equation of conic curve (ellipse) of semi-axis length a, b can be written in 
the coordinate system as presented in Figure 1b [Bronsztejn and Siemiendiajew 1990]: 

	 v
a

f v
b

2

2

2

2 1+ ( ) = 	 (5)

On the assumption that a = k and b = 1, the equation of damping function EDF 
(Figure 1b) can be written as follows [Gargula and Krupiński 2007]:
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The damping function proposed in this study is a spline, consisting of a fragment 
of conic curve and two tangents at points ko and –ko. In Figure 2 two examples of func-
tions f1 and f2 are shown, differing by tangents points (ko(1), ko(2)) of an ellipse and a line 
segment. For the purposes of this study the working notation: ELDF (elliptical and 
linear damping function) has been suggested. The efficiency of appropriate dampening 
influence on the outliers will depend on the behaviour of the proposed function. 

Source: author’s study

Fig. 2.	 The proposed damping functions (k, ko, kor – control parameters of damping function)
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The initial equation of a tangent line to an ellipse at a point ko can be expressed as 
below [Bronsztejn and Siemiendiajew 1990]:

	 f v f v k f v k v ko o o( ) − =( ) = ′ =( ) ⋅ −( ) 	 (7)

	 f v k k
ko
o=( ) = −1
2

2 	 (8)
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where: 
f v ko=( ) 	 –	 value of EDF function (6) at a point ko; 
′ =( )f v ko 	–	 a derivative of this function for v ko= . 

Therefore the ultimate form of the tangent equation will be as follows: 
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In order to determine the intersection point kr of a tangent to horizontal axis (Figu- 
re 2), that is the point of rejection of outliers from the adjustment process, the equation 
(10) would be transformed for a value of a function f v kr=( ) = 0. The result would be: 

	 k k
kr
o

=
2

	 (11)

Analogically to (10), one gets an equation of a tangent at a point v ko= − :
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At the end of this derivation a  full notation of the proposed damping function 
(ELDF) can be compiled as follows:
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From the damping function equation (13) it directly results the following notation 
of weight function: 
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Later in this study the derived equations (13), (14) will be tested on practical exam-
ples.

3.	N umerical examples – calculation plan 

Calculation examples would refer to two forms of the proposed damping functions 
(Figure 2):
•	 the function f1 for k0(1) = 0.5k (the method would be described as ELDF1),
•	 the function f2 for k0(2) = 0.7k (ELDF2).

The equation of the proposed damping function, expressed in a general form (10) 
for a definite value of the parameter k0 takes the following form: 

	 f v
k

v1
0 5

0 75
1
0 75

( ) = −
⋅
⋅ +.

. .
	 (15)

	 f v
k

v1
0 5

0 75
1
0 75

( ) = −
⋅
⋅ +.

. .
	 (16)

The value of the boundary parameter kr, denoting rejection of observations (see 
Figure 2), would be adequately: 

	
k kr 1 2( ) = 	 (17)

	
k kr 1

10
7( ) =

	 (18)

To check the suggested damping functions the example of adjustment of simple 
levelling net (junction point in levelling net) was used, as presented in Figure 3. Initial 
data are included in Table 1. 
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Table 1. Initial data for numerical example 

Nr
(i)

Benchmark height 
Ri [m]

Height differences 
hi [m]

Mean calculation 
errors
mi [m]

Approximate height  
of point P

(H’i = Ri + hi) [m]

1
2
3
4

214.000
216.000
217.000
219.000

0.991
–1.002
–1.994
–3.947

0.004
0.004
0.004
0.004

214.991
214.998
215.006
215.053

Approximate value of unknown H0 = 214.991

To compare the results the computations (the adjustment of observations and 
height calculation) will be done in a few variants: 
•	 variant 1: the standard method of least squares (LSQ),
•	 variant 2: the EDF method (Figure 1b, equation 6),
•	 variant 3: the ELDF1 method (Figure 2, function f1, equations 15, 17)
•	 variant 4: the ELDF2 method (Figure 2, function f2, equations 16, 18)
•	 variant 5: the least-square method used with rejection of outliers (LSQ*).

4.	A djustment by EDF1 method 

The detailed algorithm of the procedure will be shown on the example of the chosen 
method ELDF1, and then the results of all the methods would be compared. The models 
used in the least-square adjustment method are available in handbooks on adjustment 
computations [Wiśniewski 2005, Ghilani 2005]. 

Observation equations (standard and matrix notations)

	 h v H H Ri i i+ = + −0 δ 	 (19)

where: Ho – approximate height of the determined point

	 V = AX – L	 (20)

Source: author’s study

Fig. 3. Test levelling net (Ri – benchmarks, P – calculated point, hi – measured height differences)
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Weights and weight matrix 

	 p
mi

i

= 1
2 	 (21)

P = diag{0.625; 0.625; 0.625; 0.625}

Finding the unknown and residual vector (by LSQ method)

	 X = (ATPA)–1 · ATPL = dH = 21 mm

	 V = [21   14   6   –41]T

Standardization of residuals (3), (4)

diag{Qv} = {12; 12; 12; 12}

V T T= { } =[ ] = −[ ]v ii ;    1 4 6 06 4 04 1 73 11 84, ... , . . . .
It is assumed that the boundary criterion of damping function is k = 6 [Wiśniewski 
2005, Gargula and Krupiński 2007]. Auxiliary parameters, according to (11) and (15) 
would have the value ko = 3 and kr = 12. Following (13), these parameters of a damping 
function would be checked with regard to what ranges belong the specific standardized 
residuals; on this basis a damping index f vi( )would be determined. The calculations 
are made as an iteration process. The initial iteration (j = 0) includes results obtained 
by the standard LSQ method. 
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One can see that the observation h4 (distinctly differing from the others) obtained very 
low damping index f v4 0 02( ) = . , which would mean practically zero weight in the 
next stage of adjustment. 

Iteration j = 1 

P F V P1 0 0 0 036 0 048 0 060 0 0012( ) ( ) ( )= ( ) ⋅ = { }diag . . . .

X A P A A P LT T1 1 1 1 1 9 06( ) ( ) − ( ) ( )= ( ) ⋅ = =δH .

V = AX L1 1 9 06 2 06 5 94 52 94( ) ( ) − = − −[ ]. . . . Τ

diag diagQ P A A P A AV
T T1 1 1 1 1

28 07 20 78 16 67 8( ) ( ) − ( ) −{ } = ( ) − ( ){ } = . . . 000{ }

V
T T1 1 1 4 1 97 0 55 1 90 1 88( ) ( )= { } =[ ] = − −[ ]v ii ; ,..., . . . .

All standardised residuals vi
1( ) obtained at this stage belong to the range −k ko o; , and 

so the damping indices (diagonal elements of damping function) will be determined 
according to the function described by the equation (6):

F V 1 0 94 1 00 0 95 0 95( )( ) = { }diag . . . .
Because the values of the matrix damping function are close to unity, subsequent 

iteration (j = 2) will introduce only insignificant changes in the results of the damping 
(at the level below 0.1 mm). Therefore the results obtained in this iteration (j = 1) will 
be used in the final adjustment of observations and of unknown (the height of a point). 

5.	 The analysis of the results 

According to the procedure outlined in the above section, the calculations were made 
with EDF function (6) and ELDF2 function (16). The final results are presented in 
Table 2. 

Table 2. The results of the adjustment – comparison

The stage of adjustment No. LSQ EDF ELDF1 ELDF2 LSQ*

1 2 3 4 5 6 7

Initial observations 
hi [m]

1 0.991 0.991 0.991 0.991 0.991

2 –1.002 –1.002 –1.002 –1.002 –1.002

3 –1.994 –1.994 –1.994 –1.994 –1.994

4 –3.947 –3.947 –3.947 –3.947 –

Standardized residuals  
vi  

1 – 6.06 6.06 6.06 –

2 – 4.04 4.04 4.04 –

3 – 1.73 1.73 1.73 –

4 – –11.84 –11.84 –11.84 –
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Control parameters of 
the damping function – – K = 6

k = 6
ko = 3
kr = 12

k = 6
ko = 4.2
kr = 8.6

–

Final weights 
pi [m–2]

1 0.0625 0.000 0.036 0.026 0.0625

2 0.0625 0.046 0.048 0.046 0.0625

3 0.0625 0.060 0.060 0.060 0.0625

4 0.0625 0.000 0.001 0.000 –

Unknown δH [mm] – 21.0 11.5 9.1 9.3 7.3

Final residuals 
vi [mm]

1 21.0 11.5 9.1 9.3 7.3

2 14.0 4.5 2.1 2.3 0.3

3 6.0 –3.5 –5.9 –5.7 –7.7

4 –41.0 –50.5 –52.9 –52.7 –

Adjusted unknown 
HP [m] – 215.0120 215.0025 215.0001 215.0003 214.9983

Adjusted observations
(hi + vi) [m]

1 1.0120 1.0025 1.0001 1.0003 0.9983

2 –0.9880 –0.9975 –0.9999 –0.9997 –1.0017

3 –1.9880 –1.9975 –1.9999 –1.9997 –2.0017

4 –3.9880 –3.9975 –3.9999 –3.9997 –

LSQ	 –	 standard least-square method 
EDF	 –	 adjustment method based on damping function proposed in [Gargula and Kru-

piński 2007, Gargula 2010]
ELDF1, ELDF2	 –	 adjustment method based on damping function proposed in this study 
LSQ*	 –	 standard least-square method after rejection of outlier h4

The comparison of results allow to make a numerical analysis aimed at formulating 
the final conclusions as to the proposed damping function. The sample of observational 
data are chosen in such a way that one of the observation (h4) is distinctly different 
than others in the context of the obtained adjustment results (the height of the junction 
point Hp – Figure 3).

The adjustment of observations according to the standard LSQ method (Table 2, 
column 3), as it can be easily seen, causes the dispersion of a gross error and weighs 
down on the final results (Hp = 215.0120). However, the analysis of final residual values 
opens up a possibility of identifying the suspected observation (v4 = –41.0 mm), but the 
studied example applies to homogenous observations. In case of adjusting the observa-
tion systems of various types (angle, linear, elevation), identifying the outlier at this 
stage would be difficult.

Using the EDF function to adjustment of observation (column 4) leads to indica-
tion of standardized residuals values, which contain more precise information about 
the occurrence of gross error ( v4 = –11.84). As a result, the observation is practically 
eliminated and obtains zero weight (numerically we ascribe to it the weight close to 
zero, e.g. 0.00001, because a diagonal element of a weight function cannot equal zero). 
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However the standard parameter value k = 6 adopted here [Gargula and Krupiński 
2007] eliminates the observation h1, because v1 = 6.06 (outside the accepted range). So 
the final result of the equation (Hp = 215.0025; almost 10 mm difference in comparison 
to LSQ) is probably closer to the real value, but its reliability is low – only 1 outlier. 

The ELDF1 damping function (for an adopted criterion ko = 0.5k, column 5) does 
not exclude any observation, but observation h4 obtains very low weight (0.001) due 
to close proximity of its standardized residual (= –11.84) of a boundary value kr = 12. 
However one intuitively expects that the outlier should be excluded from the adjust-
ment process, so (for comparison purposes) the higher value of the control parameter 
was assumed: ko = 0.7k (ELDF2 function, column 6). This adjustment enhances the 
damping impact (in comparison with ELDF1) on potential observations on standard-
ized residuals within the range (Figure 2, equation 14). In this case the observation 
h4 has been eliminated (the weight equals 0.000), but it did not have significant influ-
ence on the final result (Hp = 215.0003) in comparison with the ELDF1 method (Hp = 
215.0001). It is related to the fact that already in the adjustment with the ELDF1 this 
observation obtained the weight close to zero (0.001).

The adjustment by the LSQ* method (after rejecting h4) leads to a  result (Hp = 
214.9983) that differs by 2 mm from the result obtained by ELDF2 method. It should 
be remembered however that the ELDF2 function (like other damping functions: EDF, 
ELDF1) shows a different behavior than the function resulting from the standard LSQ 
method (see Figures 1a and 2).

6.	R ecapitulation and conclusions 

This study proposed a  way of using a  new damping function in the algorithm of 
robust estimation. In the behavior of the damping function (ELDF) one can single out 
a fragment of conic curve (ellipse) and two tangents at points defined by the control 
parameter ko and –ko. The necessary mathematical equations have been introduced and 
a diagram of adjustment process of geodesic observations have been presented. The 
studied damping function was tested on two practical examples. To compare the effects 
of damping the outliers, an adjustment was done with the use of the author’s damping 
function (EDF) and the standard least-square method.

The general conclusions are as follows:
•	 the ELDF method is effective in finding gross errors,
•	 the use of the ELDF function in robust estimation leads to elimination or reduction 

(damping) of gross error impact,
•	 in comparison with other functions (EDF, Hampel’s etc.) the new function can 

gradually pass from the damping of outliers to their elimination from the adjust-
ment process,

•	 apart from the standard parameter for standardized residuals (usually k = 6), the 
ELDF function has also the possibility of controlling (damping force) the additional 
parameter ko in the suggested range k k ko ∈ ( )0 5. ; , 
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•	 the control (steering) parameters k, ko can be adopted according to values proposed 
in this study or (with greater experience) their optimal values can be determined 
empirically. 
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